Code underlying the publication: Exploiting Learned Symmetries in Group Equivariant Convolutions

Code underlying the publication: Exploiting Learned Symmetries in Group Equivariant Convolutions

1
mention
2
contributors

Description

Code corresponding to ICIP 2021 submission "Exploiting Learned Symmetries in Group Equivariant Convolutions".

Abstract

Group Equivariant Convolutions (GConvs) enable convolutional neural networks to be equivariant to various transformation groups, but at an additional parameter and compute cost. We investigate the filter parameters learned by GConvs and find certain conditions under which they become highly redundant. We show that GConvs can be efficiently decomposed into depthwise separable convolutions while preserving equivariance properties and demonstrate improved performance and data efficiency on two datasets.

Logo of Code underlying the publication: Exploiting Learned Symmetries in Group Equivariant Convolutions
Keywords
Programming languages
  • Python 75%
  • Other 21%
  • Markdown 4%
License
  • MIT
</>Source code
Packages
data.4tu.nl

Reference papers

Mentions

Contributors

Member of community

4TU